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On a Russellian paradox about propositions

and truth

Andrea Cantini

Abstract. We deal with a paradox involving the relations between propositions and
sets (appendix B of Principles of Mathematics), and the problem of its formaliza-
tion. We first propose two (mutually incompatible) abstract theories of propositions
and truth. The systems are predicatively inspired and are shown consistent by con-
structing suitable inductive models.

We then consider a reconstruction of a theory of truth in the context of (a con-
sistent fragment of) Quine’s set theory. The theory is motivated by an alternative
route to the solution of the Russellian difficulty and yields an impredicative seman-
tical system, where there exists a high degree of self-reference and yet paradoxes are
blocked by restrictions to the diagonalization mechanism.

1. A paradox of Russell concerning the type of
propositions

The doctrine of types is put forward tentatively in the second appendix of
the Principles (§500). It is assumed that to each propositional function φ is
associated a range of significance, i.e. a class of objects to which the given
φ applies in order to produce a proposition; moreover, precisely the ranges
of significance form types. However there are objects that are not ranges of
significance; these are just the individuals and they form the lowest type. The
next type consists of classes or ranges of individuals; then one has classes of
classes of objects of the lowest type, and so on.

Once the hierarchy is accepted, new difficulties arise; in particular, if one
accepts that propositions form a type (as they are the only objects of which
it can be meaningfully asserted that they are true or false). This is a crucial
point and leads Russell to a contradiction, which explicitly involves semantical
notions.
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has been presented under the title Relating KF to NF at the Symposium Russell 2001, June
2-5 2001, München.
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First of all, since it is possible to form types of propositions, there are more
types of propositions than propositions, by Cantor’s argument. But then there
is an argument which, if sound, apparently refutes Cantor’s theorem: we can
inject types of propositions into propositions by appealing to the notion of
logical product1.

Indeed, let m be a type of propositions; to m we can associate a proposi-
tion Πm which expresses that “every proposition of m is true” (to be regarded
as a possibly infinitary conjunction or logical product). Now, if m and n are
(extensionally) different types, the propositions Πm and Πn must be regarded
as distinct for Russell, i.e. the map m 7→ Πm is injective. Of course, if one
were to adopt the extensional point of view, and hence equivalent propositions
should be identified, no contradiction could be derived. But for Russell no-
body will identify two propositions if they are simply logically equivalent; the
proper equality on propositions must be much more fine-grained than logical
equivalence. For instance, the proposition “every proposition which is either
an m or asserts that every element of m is true, is true” is not identical with
the proposition “every element of m is true” and yet the two are certainly
logically equivalent.

Of course, the conflict can easily be rephrased into the form of an explicit
paradox: if we accept {p | ∃m(Πm = p ∧ p /∈ m)} = R as a well-defined type2,
we have, by injectivity of Π,

ΠR ∈ R⇔ ΠR /∈ R,

whence a contradiction.
So, if we stick to injectivity of Π, we have to change some basic tenet, e.g.

to reject the assumption that propositions form one type, and hence that they
ought to have various types, while logical products ought to have propositions
of the same type as factors.

This will be eventually the base of the 1908 solution, but here Russell
reputes the suggestion as harsh and artificial; as the reader can verify from
the text3, he still believes that the set of all propositions is a counterexample
to Cantor’s theorem.

The Principles of Mathematics, as its coeval Fregean second volume of the
Grundgesetze, conclude with an unsolved antinomy and Russell declares that

1A first discussion of the problem already appears in §349 of [21], where Russell deals
with cases in which the conclusion of Cantor’s theorem is plainly false. In this context, he
mentions the crucial paradoxical embedding of classes into propositions, without solution:
“I reluctantly leave the problem to the ingenuity of the reader”,p.368.

2Of course, in the definition of R the quantifier ranges over types of propositions.
3See [21], p.527, footnote: “.It might be doubted whether the relation of propositions

to their logical products is one-one or many one. For example, does the logical product
of p and q and r differ from that of pq and r? A reference to the definition of the logical
product (p.21) will set this doubt at rest; for the two logical products in question, though
equivalent, are by non means identical. Consequently there is a one-one relation of all ranges
of propositions to some propositions, which is directly contradictory to Cantor’s theorem.”
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“what the complete solution of the difficulty may be”, he has not succeeded in
discovering; “but as it affects the very foundations of reasoning”, he earnestly
commends “the study of it to the attention of all students of logic.” ([21],
p.528)

1.1. A formal outlook

In the literature there have been attempts to connect Russell’s contradiction on
propositions to modal paradoxes (Oksanen [16]); quite recently, Cocchiarella
([5]) shows how to resolve the contradiction in intensional logics that are
equiconsistent with NFU, Quine’s set theory with atoms. There is also a
book of P. Grim, which is entirely devoted to related issues ([11]).

In the following we first show that Russell’s argument can naturally be
formalized and resolved within the framework of a theory PT of operations,
propositions and truth, which is closely related to Aczel’s (classical) Frege
structures ([1]). We then consider a variant of PT, proving that the very
notion of propositional function defines a propositional function (this is refuted
in PT).

PT will comprise the axioms of combinatory logic with extensionality (see
[2]) and the abstract axioms for truth and propositions (T , P respectively).
We assume that the language contains individual constants →̇, ∧̇, ¬̇, ∀̇, rep-
resenting the logical operations →, ∧, ¬, ∀ and individual constants =̇, Ṫ ,
Ṗ representing the ground predicate symbols =, T and P . We implicitly as-
sume suitable independence axioms among the dotted symbols (e.g. ¬̇ 6= ∨̇,
¬̇x 6= ∨̇x, etc.), granting provability of a formal analogue of the unique read-
abilility property.

It is then straightforward to define an operation A 7→ [A], which assigns
to each formula of the language a term [A] with the same free variables of A,
which designates the “propositional object” associated to A 4. As usual, since
we can define lambda abstraction, we can identify class abstraction {x |A}
with λx.[A].

We also define:

PF (f) ⇔ (∀x)(P (fx));
Πf := ∀̇(λx(→̇(fx)x));

a ≡e b ⇔ (Ta↔ Tb);
a =e b ⇔ ∀x(T (ax) ↔ T (bx));
f ⊆ P ⇔ ∀x(T (fx) → P (x));
∨̇ab := ¬̇(∧̇(¬̇a)(¬̇b));
∃̇f := ¬̇(∀̇(λx.¬̇(fx))).

4This is an idea of D.Scott; see [3].
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As to the terminology, if PF (f) is assumed, we say that f is a propositional
function; sometimes we use x ∈ f instead of T (fx).

The point we wish to raise is that at the very beginning of his founda-
tional work, Russell hits upon arguments which naturally require a framework
where semantical notions as well as the logical notion of set (as extension of
propositional function) live on the same par.

Definition 1. We list the basic principles for propositions and truth; we es-
sentially extend the principles implicit in the definition of Frege structure à la
Aczel (see [1]), with a few extra axioms.

P1 P ([x = y]) ∧ .(T ([x = y]) ↔ x = y);

P2 T (a) → P (a);

P3 P (a) → T ([P (a)]);

P4 P ([P (a)]) → P (a);

P5 P ([T (a)]) ↔ P (a);

P6 T ([T (a)]) ↔ T (a);

P7 P (a) → (¬T (a) → T (¬̇a));

P8 T (¬̇a) → ¬T (a);

P9 P (¬̇a) ↔ P (a);

P10 P (a) ∧ (T (a) → P (b)) → P (→̇ab);

P11 P (→̇ab) → (T (a) → P (b));

P12 P (→̇ab) → (T (a) → T (b) → T (→̇ab));

P13 T (→̇ab) → (T (a) → T (b));

P14 P (a) ∧ P (b) ↔ P (∧̇ab);

P15 T (∧̇ab) ↔ T (a) ∧ T (b);

P16 ∀xP (fx) ↔ P (∀̇f);

P17 T (∀̇f) ↔ ∀x(T (fx)).

Remark 1. (i) The axioms above imply a strict interpretation of (classically
defined) disjunction and existential quantifier. By contrast with Aczel’s origi-
nal framework, it is assumed that it makes sense to use the predicates ‘to be
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a proposition’ and ‘to be true’ as logical contructors on the same par as the
standard logical operators.
(ii) The question “to which kinds of objects truth can be rightly attributed”
is a debatable issue among philosophers. For instance, in the Tarskian ap-
proach or in Kripke’s paper [15] truth is attributed to (objects representing)
sentences, i.e. to elements of an inductively defined syntactical category. On
the contrary, we underline that here propositions form an abstract collection
of objects, which are only required to meet certain broad closure conditions;
being members of a combinatory structure, they can be freely combined for
obtaining self-referential side effects for free. In general no induction on propo-
sitions is assumed (even if this might be true in some model, cf.§2). Also, the
system is non-committal about the (delicate) question of defining a proper in-
tensional equality for propositions. Here propositions inherit a neutral equality
relation, determined by the applicative behaviour in the ground structure.

Lemma 1 (PT). (i) If PF (f) and f ⊆ P , then Πf is a proposition such that

T (Πf) ↔ (∀x(T (fx) → T (x)).

Moreover:

T (a) ↔ T (¬̇(¬̇a));
T ([¬T (a)]) ↔ T (¬̇a);
T ([P (a)]) ↔ P (a);

∃x¬T ([¬P (x)]);
P (∨̇ab) ↔ P (a) ∧ P (b);

P (a) ∧ P (b) → (T (∨̇ab) ↔ T (a) ∨ T (b));
P (∃̇f) ↔ ∀xP (fx);

∀xP (fx) → (T (∃̇f) ↔ ∃xT (fx)).

(ii) We also have:

Πf = Πg → f = g

PF (a) ∧ PF (b) ∧ a =e b → (Πa ≡e Πb)

(iii) Π is not extensionally injective, i.e. there exist propositional functions a,
b such that

Πa ≡e Πb ∧ ¬(a =e b).
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Proof. As to (i), we only check the first claim (using axioms for →̇, ∀̇)

PF (f) ∧ f ⊆ P ⇒ P (fx) ∧ (T (fx) → P (x))
⇒ P (→̇(fx)x)
⇒ PF (λx.→̇(fx)x)
⇒ P (Πf)
⇒ T (Πf) ↔ ∀x(T (fx) → T (x))

(ii): apply injectivity of ∀̇, →̇ and extensionality for operations. (iii): choose
a = {[K = K], [S = S]} and b = {[K = K]}; then Πa ≡e Πb, but a and b are
extensionally distinct propositional functions). QED.

Clearly, we can derive the Tarskian T-schema:

Proposition 1. If A is an arbitrary formula, then PT proves:

P ([A]) → (T ([A]) ↔ A)

Proposition 2 (Russell’s Appendix B, [21]). The term

{x | ∃m(PF (m) ∧m ⊆ P ∧ x /∈ m ∧ x = Πm)}

does not define a propositional function, provably in PT.

Proof. Let

R := {x | ∃m(PF (m) ∧m ⊆ P ∧ x /∈ m ∧ x = Πm)}.

Assume by contradiction that PF (R). Then, by applying the closure condi-
tions of P , T and lemma 1:

(∀x ∈ R)(P (x)),

Hence:

P (ΠR).

Now we have, for some m:

ΠR ∈ R⇒ ΠR = Πm ∧ PF (m) ∧m ⊆ P ∧ΠR /∈ m.

By the previous lemma (Π is 1-1), R = m and hence ΠR /∈ R. But ΠR /∈ R
implies ΠR ∈ R, since R is a propositional function of propositions.

Lemma 2 (PT). If P is a propositional function, then PF itself is a propo-
sitional function.
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Proof. If P is a propositional function, we have:

⇒ ∀x.P ([P (x)])
⇒ ∀x.P ([P (fx)])
⇒ ∀fP ([∀x.P (fx)])
⇒ ∀fP ([PF (f)])

Theorem 1 (PT). PF and P are not propositional functions.

Proof. By the previous lemma, it is enough to show that PF is not a propo-
sitional function.
Assume PF is a propositional function. The axioms on the relation between
P and ∀ imply:

∀x∀u.P ([P (xu)]).

Hence using the axiom P ([P (xu)]) → P (xu), we conclude:

∀x.PF (x),

against the previous proposition.
Alternative argument : if λx.PF (x) is a propositional function, we can show,

with the implication axioms that

W := {x |PF (x) ∧ (PF (x) → ¬̇(xx))}

is a propositional function. Then the standard Russell paradox arises.
The conclusion is that under relatively mild hypotheses (a notion of truth

which obeys to classical laws, endowed with an abstract notion of proposition)
the paradox disappears. Clearly, no propositional function reasonably defining
the power class of the collection of propositions can exist in the above frame-
work; on the same par, the collection of propositions cannot give rise to a
well-defined propositional function. The solution is compatible with Russell’s
no-class theory: it could be assumed that the universe of classes exactly in-
cludes those collections which are represented by terms of the form {x |A(x)},
where A(x) defines a propositional function (cf. the model construction of §2).

1.2. An alternative theory of truth and propositions

Definition 2. We describe a variant AT of the system PT, which is so devised
that the assumption “PF (x) is a proposition” is consistent:

A1 P ([x = y]) ∧ .(T ([x = y]) ↔ x = y);

A2 T (a) → P (a);
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A3 ∀xT ([¬P (x)]);

A4 P ([T (a)]) ↔ P (a);

A5 T ([T (a)]) ↔ T (a);

A6 P (a) → (¬T (a) → T (¬̇a));

A7 T (¬̇a) → ¬T (a);

A8 P (¬̇a) ↔ P (a);

A9 P (a) ∧ P (b) ↔ P (∧̇ab);

A10 T (∧̇ab) ↔ T (a) ∧ T (b);

A11 ∀xP (fx) ↔ P (∀̇f);

A12 T (∀̇f) ↔ ∀x(T (fx)).

The typical principle of the system is A3, according to which no claim about
P (a) can be internally true. A3 implies with A2, A8 the following principle
(Λ):

∀x.P ([P (x)])

It follows from (Λ) that AT is inconsistent with the axiom:

P ([P (x)]) → P (x).

Indeed, let L be the Liar object L = ¬̇(L). Since P ([P (L)]) holds, we have
P (L) and we can conclude with the negation axioms that T (¬̇L) ↔ ¬T (L),
whence a contradiction.

Moreover, if we apply (Λ) and A11, we obtain:

Proposition 3 (AT). λx.PF (x) is a propositional function.

Observe also that A3 implies that the PT-axiom P (a) → T ([P (a)]) is incon-
sistent with AT (choose a := [x = y]).

On the other hand, similarly to PT, we can prove in AT:

T ([¬T (a)]) ↔ T (¬̇a);

In order to appreciate the difference in strength between AT and PT, it
may be of interest to compare the closure properties of propositional functions
in either system. First of all, both systems are closed under elementary com-
prehension. Indeed, if ~a is a finite list a0, . . . an of variables distinct from x, we
say that A(x,~a), where FV (A) ⊆ ~a, x is elementary in ~a, if A is inductively
generated from atomic formulas of the form t = s, t ∈ ai (with 0 ≤ i ≤ n and
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no variable of ~a free in t, s) by means of ¬, ∧ and quantification on variables
not occurring in the list ~a.

Let PT∩AT be the theory consisting of those axioms, which are common
to PT and AT.

Proposition 4 (PT∩AT). If A(x,~a) is elementary in ~a and each ai of the
list ~a is a propositional function, then {x |A(x,~a)} is a propositional function
such that

∀u(u ∈ {x |A(x,~a)} ↔ A(u,~a))

However, while propositional functions are closed under disjoint union (or join)
in PT, the same cannot be proved in AT.

Let us justify this claim. We introduce a kind of sequential conjunction �,
due to Aczel [1]:

a� b := a ∧ (a→ b)

Clearly PT proves:

P (a) ∧ (T (a) → P (b)) → P (a� b) ∧ T (a� b) ↔ T (a) ∧ T (b)

Since we have combinatory logic as underlying theory, we can assume to have
an ordered pairing operation x, y 7→ (x, y) with projections u 7→ u0, u 7→ u1.
Therefore it makes sense to define

Σ(a, f) := {u | (u = (u0, u1) ∧ u0 ∈ a � u1 ∈ f(u)0)}

Proposition 5. (i) PT proves that, if a is a propositional function and fx
is a propositional function whenever x ∈ a, then Σ(a, f) is a propositional
function satisfying (J) :

u ∈ Σ(a, f) ↔ u = (u0, u1) ∧ u0 ∈ a ∧ u1 ∈ f(u)0

(ii) AT proves the weak power class axiom: for every propositional function a,
there exists a propositional function Pow−(a) such that

∀u(u ∈ Pow−(a) → PF (u) ∧ u ⊆ a);
∀u(PF (u) ∧ u ⊆ a → ∃b(PF (b) ∧ b ∈ Pow−(a) ∧ u =e b))

As to the proof, (i) is an immediate consequence of the definition of �, while
(ii) essentially depends on the axiom that P (x) is a proposition for every x,
once we set

Pow−(a) = {u |PF (u) ∧ ∃b(PF (b) ∧ u = b ∩ a)}

Corollary 1. AT+(J) is inconsistent.

This follows by adapting Russell’s paradox along the lines of Feferman [7].
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1.3. PT and AT are non-cantorian

The claim means that in neither truth theory there is a good analogue of the
power set in terms of propositional functions. The reason is given by the results
below, which are provable in the common subtheory of PT and AT (so they
do not involve properties of strong implication nor the fact that λx.PF (x) is
a propositional function).

Definition 3. (i) (A formula of our language) ϕ(x) is called extensional
iff ∀f∀g(PF (f) ∧ PF (g) ∧ f =e g ∧ ϕ(f) → ϕ(g));

(ii) a formula ϕ(x) such that ∀x(ϕ(x) → PF (x)) is non-trivial, provided
there are propositional functions x, y such that ϕ(x), ¬ϕ(y)).

Lemma 3 (“Inseparability”, in PT∩AT). Assume that ϕ1, ϕ2 are extensional
formulas and there exist propositional functions x1, x2 such that ϕ1(x1), ϕ2(x2).
Then ϕ1 and ϕ2 are PF -inseparable, i.e. for no propositional function x3 we
can have:

∀u(PF (u) ∧ ϕ2(u) → u /∈ x3) ∧ ∀u(PF (u) ∧ ϕ1(u) → u ∈ x3)

Proof. Assume that x3 is a propositional function such that

∀u(PF (u) ∧ ϕ2(u) → u /∈ x3)

It is enough to produce a propositional function g := g(x1, x2, x3) such that

g /∈ x3 ∧ ϕ1(g).

Choose by the fixed point lemma an element g such that g = Gg, where

Gh = {u | (u ∈ x1 ∧ h /∈ x3) ∨ (u ∈ x2 ∧ h ∈ x3)}

Then, using the common axioms on ∧, ¬ and the assumption that x3, x2, x1

are propositional functions, we have that g is a propositional function.
If g ∈ x3, then g =e x2. Since ϕ2(x2), also ϕ2(g); thus g /∈ x3.
Hence g /∈ x3, which yields g =e x1. But ϕ1(x1); so ϕ1(g) by extensionality.

QED

Theorem 2 (PT∩AT). No propositional function f can be both extensional
and non-trivial.

So, for instance, there cannot exist a propositional function playing the role
of the power set of {∅}, i.e. whose range is exactly the collection of all propo-
sitional functions ⊆ {∅}: for this would be non-trivial and extensional.

The results above are extensions to the context of Frege structures of results
holding for theories of explicit mathematics (see [4]).
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2. About models

We outline two inductive model constructions for PT and AT (respectively).

2.1. PT-models

The basic idea is to consider any given combinatory algebra as ground universe
and to produce, by generalized inductive definition, the collections of propo-
sitions and truths. This cannot be simply rephrased as a standard monotone
inductive definition, because the clause for introducing a proposition of im-
plicative form makes use (negatively) of the collection of truths. Nevertheless,
we can adapt a trick of Aczel ([1])5

Fix an extensional combinatory algebra M; let |M | be the universe of M.
If X = 〈X0, X1〉, Y = 〈Y0, Y1〉, and X0, X1, Y0, Y1 are subsets of M , define

X ≤ Y ⇔ X0 ⊆ Y0 ∧ (∀a ∈ X0)(a ∈ X1 ↔ a ∈ Y1)

Let F be the family of all pairs X = 〈X0, X1〉 of subsets of |M |, satisfying the
restriction X1 ⊆ X0. If X ∈ F , we call X suitable.

Lemma 4. The structure 〈F ,≤〉 is a complete partial ordering 6.

We then define an operator Γ on suitable subsets of |M |. Γ(X) can be given
by specifying two operators Γ0(X), Γ1(X) such that Γ(X) = 〈Γ0(X),Γ1(X)〉.
Γ0(X) is defined by the following formula A0(x,X):

∃u∃v [ (x = [u = v]) ∨ (x = [Pu] ∧ u ∈ X0) ∨
∨ (x = [Tu] ∧ u ∈ X0) ∨
∨ (x = (¬̇u) ∧ x ∈ X0) ∨
∨ ((x = (u∨̇v) ∨ x = (u∧̇v)) ∧ u ∈ X0 ∧ v ∈ X0) ∨
∨ (x = (u→̇v) ∧ u ∈ X0 ∧ (u /∈ X1 ∨ v ∈ X0)) ∨
∨ ((x = ∀̇u ∨ x = ∃̇u) ∧ ∀x(ux) ∈ X0)]

5As an alternative, we can define the model by transfinite recursion over the ordinals, in
much the same way as the model for Feferman’s theories with the so-called join axiom.

6I.e. a partial ordering in which every ≤-increasing sequence of elements of F has a least
upper bound with respect to ≤.
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Γ1(X) is defined by the following formula A1(x,X):

∃u∃v [ (x = [u = v] ∧ u = v) ∨
∨ (x = [Pu] ∧ u ∈ X0) ∨ (x = [Tu] ∧ u ∈ X1) ∨
∨ (x = (¬̇u) ∧ u ∈ X0 ∧ u /∈ X1) ∨
∨ (x = (u∨̇v) ∧ u ∈ X0 ∧ v ∈ X0 ∧ (u ∈ X1 ∨ v ∈ X1)) ∨
∨ (x = (u∧̇v) ∧ u ∈ X0 ∧ v ∈ X0 ∧ u ∈ X1 ∧ v ∈ X1) ∨
∨ (x = (u→̇v) ∧

∧ (u ∈ X0 ∧ (u /∈ X1 ∨ v ∈ X0) ∧ (u /∈ X1 ∨ v ∈ X1))) ∨
∨ (x = ∀̇u ∧ ∀x(ux) ∈ X0 ∧ ∀x(ux) ∈ X1) ∨
∨ (x = ∃̇u ∧ ∀x(ux) ∈ X0 ∧ ∃x(ux) ∈ X1)]

The following properties are immediate:

Lemma 5. (i) Γ : F → F .
(ii) X ≤ Y , then Γ(X) ≤ Γ(Y ) (where X, Y ∈ F ). Hence there are sets
X ∈ F , such that X = Γ(X).

Theorem 3. If X ∈ F and X = Γ(X), then

〈M, X〉 |= PT.

Hence PT is consistent.

The proof of the theorem is straightforward.

2.2. AT-models

As to the system AT, we first inductively define the set of propositional objects
over a given combinatory algebra. We then exploit the stages assigned to
propositional objects for generating the truth set.

Formally, we fix an extensional combinatory algebra M with universe |M |.
We also assume that our language includes names for objects of M (for which
we adopt the same symbols). If t is a term of the expanded language, tM

stands for the value of t in M. We are now ready to define by transfinite
recursion on ordinals a sequence {Pα} of subsets of |M |:

• Initial clause:

P0 = {[a = b] | a, b ∈M} ∪ {[Pa] | a ∈M};

• Limit clause: if λ is a limit ordinal,

Pλ = ∪{Pα |α < λ};
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• ¬- and ∧-rules:
a ∈ Pα

(¬̇a)M ∈ Pα+1

a ∈ Pα b ∈ Pα

(a∧̇b)M ∈ Pα+1

• ∀- and T -rules:

for all c ∈ |M |, (fc)M ∈ Pα

∀̇fM ∈ Pα+1

a ∈ Pα

(Ṫ a)M ∈ Pα+1

In a similar way, we recursively produce a sequence {Tα} of subsets of |M |,
approximating the truth set :

• Initial clause:
M |= a = b

[a = b]M ∈ T0
;

• Limit clause: if λ is a limit ordinal,

Tλ = ∪{Tα |α < λ};

• First successor clause: if a ∈ Pα,

a ∈ Tα+1 ⇔ a ∈ Tα

• Second successor clause: assume a ∈ Pα+1 −Pα. We distinguish several
cases according to the form of a, i.e. a = ∀̇f , Ṫ b , ¬̇b, b∧̇c (respectively).

1. ∀- and T -clauses:

for all c ∈ |M |, (fc)M ∈ Tα

∀̇fM ∈ Tα+1

b ∈ Tα

(Ṫ b)M ∈ Tα+1

2. ∧- and ¬-clauses:
b ∈ Tα c ∈ Tα

(b∧̇c)M ∈ Tα+1

b /∈ Tα

(¬̇b)M ∈ Tα+1

By transfinite induction on ordinals, it is not difficult to verify:

Lemma 6. If a ∈M , then

a ∈ Tα ⇒ a ∈ Pα;
α ≤ β ⇒ Pα ⊆ Pβ ∧ Tα ⊆ Tβ ;
a ∈ Pα ⇒ a ∈ Tα ∨ (¬̇a) ∈ Tα+1;

(¬̇a) ∈ Tα ⇒ a /∈ Tβ (β arbitrary ).

We choose P = ∪{Pα | α ordinal }, T = ∪{Tα | α ordinal }; of course, P,
T depend on the underlying combinatory algebra M, but we leave this fact
implicit.
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Lemma 7. Let O be the open term model of combinatory logic plus extension-
ality 7. Then it holds over O:

P = Pω and T = Tω

Proof. Assume that we have proved

P = Pω. (1)

By lemma 6, if a ∈ Tδ, then a ∈ Pδ. By assumption, a ∈ Pk, for some finite
k. By the third claim of lemma 6, either a ∈ Tk or (¬̇a) ∈ Tk+1. In the first
case we are done; the second case implies a /∈ Tδ (again lemma 6, last claim),
contradiction. Hence Tδ ⊆ Tω. But the converse inclusion trivially holds and
hence T = Tω.

It remains to check (1). It is sufficient to define a recursively enumerable
derivability relation ` over the term model, such that, for every a ∈ O,

` a ⇔ a ∈ P

But this is straightforward: the axioms of ` will have the form [t = s], [P (t)],
while the inference rules correspond to the positive inductive clauses generating
the sequence {Pα}. Of course, the clause for ∀ can be rephrased as a finitary
inference: from ` ax, infer ` ∀̇a, provided x is not free in a.

It is then easy to check that the derivability relation is closed under sub-
stitution, that is, for arbitrary terms a, s:

` a(x) ⇒` a[x := s]

This property together with the fact that O is the open term model readily
yields the initial claim (1)(proofs are carried out by induction on the definition
of ` and by transfinite induction on ordinals). QED

Theorem 4. 〈M,P, T 〉 |= AT.

2.2.1. Proof-theoretic digression Of course, we can consider applied ver-
sions of PT and AT. Indeed, let PTN (ATN) be PT (AT) extended with a
predicate N for the set of natural numbers, constants for 0, successor, prede-
cessor and conditional on N , the induction schema for natural numbers for N .
Then:

Theorem 5. (i) PTN is proof-theoretically equivalent to ramified analysis of
arbitrary level below ε0.

(ii) If N -induction is restricted to propositional functions, the resulting sys-
tem PTNc is proof-theoretically equivalent to Peano arithmetic.

7For details see [2].
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The proof follows well-known paths; the lower bound can be obtained by em-
bedding in PTN a system of the required strength, for instance Feferman’s
EM0+J [7].

As to the upper bound, it is possible to provide a proof-theoretic analysis
of PTN with predicative methods (partial cut elimination and asymmetric
interpretation into a ramified system with levels < ε0). A quick proof of the
conservation result exploits recursively saturated models.

Concerning the strength of ATN, we do not have a definite result yet, but
we believe that the following is true:

Conjecture 6. (i) ATN has the same proof theoretic strength of ACA, the
system of second order arithmetic based on arithmetical comprehension.
(ii) ATN with number theoretic induction restricted to propositional functions
is proof-theoretically equivalent to Peano arithmetics.

As to possible routes for proving (i)-(ii), one ought to consider lemma 7
and the methods of Glass [10].

3. Stratified Truth ?

We now explore an alternative route, which takes into account the possibility
of dealing with the paradox in a fully impredicative, extensional framework,
Quine’s set theory NF. In the new model, the set of all propositions and the set
of all truths do exist, and, to a certain extent, the notion of truth has rather
strong closure properties.

We first describe the formal details. Ls is the elementary set theoretic
language, which comprises the binary predicate symbol ∈. Ls–terms are simply
individual variables (x, y, z, . . .) and prime formulas (atoms) have the form t ∈
s (t, s terms). Ls–formulas are inductively generated from prime formulas by
means of sentential connectives and quantifiers. The elementary set theoretic
language L+

s is obtained by adding to Ls the abstraction operator {− |−};
L+

s –terms and formulas are then simultaneously generated. The clause for
introducing class terms has the form: if ϕ is a formula, then {x |ϕ} is a term
where FV ({x |ϕ}) = FV (ϕ−{x}) (FV (E) is the set of free variables occurring
in the expression E).
As usual, two terms (formulas) are called α–congruent if they only differ by
renaming of bound variables; we identify α–congruent terms (formulas).

3.1. Stratified comprehension
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As usual for Quine’s systems, we need the technical device of stratification; we
also define a restricted notion thereof, which is motivated by the consideration
of “loosely predicative” class existence axioms.

(i) ϕ is stratified iff it is possible to assign a natural number (type in short)
to each term occurrence 8 of ϕ in such a way that

1. if t ∈ s is a subformula of ϕ, the type of s is one greater than the
type of t;

2. all free occurrences of the same variable in any subformula of ϕ have
the same type;

3. if x is free in ψ and ∀xψ is a subformula of ϕ, then the ‘x’ in ∀x
and the free occurrences of x in ψ receive the same type;

4. if t = {x |β} occurs in ϕ, x is free in β, then t is assigned a type one
greater than the type assigned to x, and all the free occurrences of
x in β receive the same type.

(ii) {x |ϕ} is stratified if ϕ is stratified;

(iii) a stratified term {x |ϕ(x, ~y)} is loosely predicative iff for some type i ∈ ω,
{x |ϕ(x, ~y)} has type i + 1, no (free or bound) variable of ϕ(x, ~y) is as-
signed type greater than i+1; a stratified term {x |ϕ(x, ~y)} is predicative
iff {x |ϕ(x, ~y)} is loosely predicative and in addition no quantified vari-
able of ϕ(x, ~y) is assigned the same type as {x |ϕ(x, ~y)} itself.

(iv) ϕ is n+ 1–stratified iff ϕ is stratified by means of 0, . . . , n.

For instance,
⋃
a = {x | (∃y ∈ a)(x ∈ y)} is not loosely predicative, since

it requires type 2, but
⋃
a itself has type 1; a ∩ b = {x |x ∈ a ∧ x ∈ b} is

predicative.

Definition 4. The system NF comprises:

1. predicate logic for the extended language 9;

8Individual constants included; these can be given any type compatible with the clauses
below.

9To be more accurate, if the abstraction operator is assumed as primitive, it is convenient
to include in the extended logic the schema

∀u(ϕ(u) ↔ ψ(u)) → {x |ϕ(x)} = {x |ψ(x)}.

This would ensure that {x | ¬x = x} = {x |x ∈ x ∧ ¬x ∈ x}. An alternative route would be
to extend the logic with a description operator, say in the style of [14], ch.VII. If this choice
is adopted, the previous schema becomes provable. Be as it may, the resulting theories are
conservative over NF as formalized in the pure set theoretic language Ls, and we won’t
bother the reader with further details.
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2. class extensionality: ∀x∀y(x =e y → x = y), where

t = s :⇔ ∀z(t ∈ z → s ∈ z);
t =e s :⇔ ∀x(x ∈ t↔ x ∈ s)

3. stratified explicit comprehension SCA: if ϕ is stratified, then

∀u(u ∈ {x |ϕ(x, ~y)} ↔ ϕ(u, ~y))

Other systems

(i) NFP (NFI) is the subsystem of NF, where SCA is restricted to (loosely)
predicative abstracts.

(ii) NFk (NFIk, NFPk) is the subsystem of NF (NFI, NFPk), where (at most)
k types are allowed for stratification.

Remark 2. If Union is the axiom “
⋃
a exists, for all a ”, then NFP+Union is

equivalent to the full NF (cf. [6])

3.2. Consistent NF-subtheories

By a theorem of Crabbè ([6]), NFI is provably consistent in third order arith-
metic. The details of the (different) consistency proofs for NFI can be found in
[6] and [13]. The main idea of [6], pp.133-135, is to exploit the reducibility of
NFI to its fragment NFI4; then NFI4 is interpreted into a corresponding type
theory up to level 4, TI4, plus Amb (= the so called schema of typical ambi-
guity, see [20])10 These steps are finitary and adapt well-known theorems of
Grishin and Specker. TI4+Amb is shown consistent by means of the Hauptsatz
for second order logic (which is equivalent in primitive recursive arithmetic to
the 1-consistency of full second order arithmetic11). Hence:

Theorem 7. NFI is consistent (in primitive recursive arithmetic plus the 1–
consistency of second order arithmetic).

In order to carry out a Kripke-like construction in the NF-systems and to
represent the syntax, we shall essentially exploit Quine’s homogeneous pairing
operation, which does require extensionality and the existence of a copy of the
natural numbers. But it is not difficult to check that Quine’s pairing is indeed
well-defined already in NFI.

10In TI4, {xi |ϕ} exists, provided i = 0, 1, 2 and ϕ contains free or bound variables of type
i+ 1 at most.

11E.g. see J.Y. Girard, Proof Theory and Logical Complexity, Bibliopolis, Napoli 1987,
p.280.
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This requires two steps. First of all, the collection of Fregean natural
numbers is a set in NFI. Define:

∅ = {x |x 6= x};
V = {x |x = x}
0 = {∅};

a+ 1 = {x ∪ {y} |x ∈ a ∧ y /∈ x};
ClN (y) ⇔ 0 ∈ y ∧ ∀x(x ∈ y → (x+ 1) ∈ y);

N = {x | ∀y(ClN (y) → x ∈ y)}

Then NFI grants the existence of N ; in fact, by inspection, all the above sets
above are loosely predicative. Furthermore, we have, provably in NFI:

Lemma 8 (NFI).

ClN ({x |ϕ(x)}) → N ⊆ {x |ϕ(x)}; (2)
(∀x)(x ∈ N ↔ x = 0 ∨ (∃y ∈ N )(x = y + 1)); (3)

∅ /∈ N ∧ (∀x ∈ N )(V /∈ x); (4)
(∀x ∈ N )(x+ 1 6= 0); (5)

(∀x ∈ N )(∀y ∈ N )(x+ 1 = y + 1 → x = y) (6)

(In (2) {x |ϕ(x)} must be loosely predicative).

Clearly N is infinite by (4) above. As to the proof, (4) holds in NFI + Union, as
NFI+Union ≡ NF, and NF proves (4) according to a famous result of Specker
([19]). On the other hand, NFI + ¬Union implies (4) by [6]. The claims (3),
(2) with the Peano axioms are provable in NFI ((6) requires the second part
of (4)).

Definition 5. (Homogeneous pairing; [18])

φ(a) = {y | y ∈ a ∧ y /∈ N} ∪ {y + 1|y ∈ a ∧ y ∈ N};
θ1(a) = {φ(x) |x ∈ a};
θ2(a) = {φ(x) ∪ {0} |x ∈ a};
(a, b) = θ1(a) ∪ θ2(b);
Q1(a) = {z |φ(z) ∈ a};
Q2(a) = {z |φ(z) ∪ {0} ∈ a}

The definitions above are (at most) loosely predicative and hence the universe
of sets is closed under the corresponding operations, provably in NFI.

Lemma 9 (NFI). 1. φ(a) = φ(b) → a = b ;
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2. 0 /∈ φ(a);

3. θi(a) = θi(b) → a = b, where i = 1, 2;

4. Qi((x1, x2)) = xi, where i = 1, 2.

5. (x, y) = (u, v) → x = u ∧ y = v.

6. the map x, y 7−→ (x, y) is surjective and ⊆–monotone in each variable.

The proof hinges upon the properties of N and the successor operation ([18]).
In particular, we below exploit the fact that Quine’s pairing operation is ⊆-
monotone in both arguments. This is seen by inspection: the definition of
(a, b) is positive in a, b 12.

Lemma 10 (Fixed point). Let A(x, a) be a formula which is positive in a.
Assume that

ΓA(a) = {x |A(x, a)}

is loosely predicative, where x, a are given types i, i+1 respectively. Then NFI
proves the existence of a set c of type i+ 1, such that:

• ΓA(c) ⊆ c ;

• ΓA(a) ⊆ a ⇒ c ⊆ a.

The proof is standard: observe that the set

c := {x | ∀d(ΓA(d) ⊆ d→ x ∈ d)}

is loosely predicative 13.

Definition 6. NFI(pair) (NFP(pair), NF(pair)) is the theory, which extends
NFI (NFP, NF respectively) with a new binary function symbol (−,−) for
ordered pairing and the corresponding new axiom:

∀x∀y∀u∀v((x, y) = (u, v) → x = u ∧ y = v)

It is understood that the stratification condition is lifted to the new language
by stipulating that t, s in (t, s) receive the same type.

The strategic role of homogeneous pairing is clarified by two equivalence re-
sults. Below let S1 ≡ S2 denote the relation that holds between two formal
theories S1, S2 whenever they are mutually interpretable.

12We recall that a formula A(x, a) is positive in a if every free occurrence of a in the
negation normal form of A is located in atoms of the form t ∈ a, which are prefixed by an
even number of negations and where a /∈ FV (t).

13A similar argument shows that NFI justifies the existence of the largest fixed point of
ΓA.
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Proposition 6. NF ≡ NF3(pair)

The proof of this statement was independently suggested by Antonelli and
Holmes. The basic observation is that NFP3(pair) proves the existence of the
set E, where E := ∃y(y = E) and E = {{{x}, y} |x ∈ y}. But by Grĭsin [12],
NF ≡ NF3 + E .

We can readily extend the proposition to the subsystems NFI, NFP.

Proposition 7. NFP ≡ NFP3(pair) and NFI ≡ NFI3(pair)

Proof. Let

I ⇔ ∃y(y = {u | ∩ u 6= ∅})

By a theorem of Grishin and [6], NFI ≡ NFI3 +I, (respectively NFP ≡ NFP3 +
I). But NFP3(pair) proves that M = {({x}, y) |x ∈ y} is a set and

∀s∃a∀x(x ∈ a↔ ∃q(q ∈ s ∧ (∀z ∈ x)((q, z) ∈M))) (7)

Choose s = {{x} |x ∈ V } in (7); then NFP3(pair) proves that there is a set I
such that

(∀x)(x ∈ I ↔ ∩x 6= ∅)

It follows that we can freely use the homogeneous pairing operation when
we work in NF and NFI.

4. Generating a truth set in NFI

We now simulate via homogeneous pairing the logical operations, which are
essential for introducing in the Quinean universe a counterpart of the formula-
representing map of §1.1.

Definition 7.

¬̇x := (0, x);
x∧̇y := (1, (x, y));
∀̇f := (2, f);
∈̇xy := (3, (x, y))

Then we can inductively introduce a map A 7→ [A] such that FV (A) =
FV ([A]) and
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• [t ∈ s] := ∈̇{t}s;

• [¬A] := ¬̇[A] ;

• [A ∧B] := ∧̇[A][B] ;

• [∀xA] := ∀̇{x |A}.

We also define

y · x := [x ∈ y]

Under the dot-application, the universe of sets becomes an applicative struc-
ture. Note however that y · x is stratified only if y and x are given the types
i+ 1 and i (respectively), and that the result of applying y to x is one greater
than the type of x.

Lemma 11 (Restricted diagonalization, in NFI). There is a term R such that

R = ¬̇R

Moreover, for every a, there is a term ∆(a) such that

∆(a) = [¬(a ∈ ∆(a))]

Proof. The operation Γ(a) = (¬̇, a) is monotone in a. By the fixed point
lemma, there is some R satisfying the claim. As to the second part, Φa(b) =
[a ∈ b] = (3, (a, b)) is monotone in b. So the conclusion is implied by lemma
10.

We now model the Kripke-Feferman notion of self-referential truth, as de-
veloped in [3], within the abstract framework of Quine’s set theory. The truth
predicate T is introduced as the fixed point of a stratified positive (in a) op-
erator T (x, a), which encodes the recursive clauses for partial self-referential
truth and is given by the formula

∃u∃v∃w [ (x = [u ∈ v] ∧ u ∈ v) ∨
∨ (x = [¬u ∈ v] ∧ ¬u ∈ v) ∨
∨ (x = [¬¬v] ∧ v ∈ a) ∨
∨ (x = v∧̇w ∧ v ∈ a ∧ w ∈ a) ∨
∨ (x = ¬̇(v∧̇w) ∧ (¬̇v ∈ a ∨ ¬̇w ∈ a)) ∨
∨ (x = ∀̇v ∧ ∀z(v · z ∈ a)) ∨
∨ (x = ¬̇∀̇v ∧ ∃z(¬̇v · z ∈ a))]

Clearly {x | T (x, a)} is ⊆-monotone in a and is predicative: it receives type 2
once we assign type 0 to u, z, type 1 to x, v, w, type 2 to a.
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Definition 8.

ClT (a) := ∀x(T (x, a) → x ∈ a);
T := {x | ∀a(ClT (a) → x ∈ a)};

Ta : := a ∈ T.

Lemma 10 immediately implies:

Proposition 8. NFI proves:

1. ∃y(y = T );

2. ∀a(T (a, T ) → a ∈ T );

3. ClT (a) → T ⊆ a.

Proposition 9. NFI proves:

T [x ∈ y] ↔ x ∈ y;
T [¬x ∈ y] ↔ ¬x ∈ y;

T ¬̇¬̇x ↔ Tx;
T (x∧̇y) ↔ Tx ∧ Ty;

T ¬̇(x∧̇y) ↔ T (¬̇x) ∨ T (¬̇y);
T ∀̇f ↔ ∀xT (f · x);

T ¬̇∀̇f ↔ ∃xT ¬̇(f · x).

Proof. Use Ta↔ T (a, T ), which is provable with proposition 8, and the inde-
pendence properties of ¬̇, ∧̇, ∀̇, ∈̇, which follow from lemmata 8–9. QED

Hence, as interesting special cases, we obtain:

(T [Tx] ↔ Tx) ∧ (T [¬Tx] ↔ ¬Tx)

Proposition 10 (Consistency). NFI proves

1. ∀x(T ¬̇x→ ¬T ¬̇x);

2. ∃y(¬Ty ∧ ¬T ¬̇y).

Proof. Ad 1: choose ψ(a) := ¬T (¬̇a); {x |ψ(x)} exists in NFI. Then check

∀a(T (a, {x |ψ(x)}) → ψ(a))

Ad 2: let y = R (lemma 11) and apply consistency.

Consider the map

x 7→ ϕ(x) := [¬Tx]
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Remark 3. An alternative “ Liar propositional object” would be a set L such
that

L = [¬TL] = [¬(L ∈ T )].

But observe that the above equation cannot be stratified. Indeed, NFI proves

¬∃x(x = [¬Tx])

Lemma 12. If A is stratified (and {x |A} is loosely predicative), then

T [∀xA] ↔ ∀xA;
T [¬∀xA] ↔ ¬∀xA

are provable in NF (NFI).

Proof. Consider the following steps:

T [∀xA] ↔ ∀uT ({x |A} · u);
↔ ∀uT [u ∈ {x |A}];
↔ ∀u(u ∈ {x |A});
↔ ∀uA[x := u]

Observe that the second step uses proposition 9, while the last step requires
stratified comprehension in NF (or in NFI, provided A is loosely predicative).

Theorem 8 (Stratified T-schema). If A is stratified, NF proves

T [A] ↔ A

If A is ∀-free, the schema is already provable in NFI.

Proof. By induction on A with proposition 9 and the previous lemma. QED

The stratified T-schema implies that T strongly deviates from the behaviour of
self-referential truth predicates à la Kripke-Feferman, which cannot in general
apply to the truth axioms themselves nor to arbitrary logical axioms (see [15],
[8]). On the contrary, T provably believes that it is two-valued, consistent and
that it satisfies the closure conditions embodied by the operator formula T (x, T )
generating partial truth itself :
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Corollary 2 (vs. KF). NFI proves:

T [Ta ∨ ¬Ta];
T [¬(Ta ∧ ¬Ta)];

T [T [x ∈ y] ↔ x ∈ y];
T [T [¬x ∈ y] ↔ ¬x ∈ y];

T [T ¬̇¬̇x ↔ Tx];
T [T (x∧̇y) ↔ Tx ∧ Ty];

T [T ¬̇(x∧̇y) ↔ T (¬̇x) ∨ T (¬̇y)]

In addition, NF` T [∀xT (f · x) ↔ T ∀̇f ] ∧ T [∀x(Tx↔ T (x, T ))].

Proof. As to the first part, apply proposition 9 and theorem 7. Concerning
the second part, first observe:

∀x(f · x ∈ T ) ≡ ∀xT (f · x)
↔ ∀x(x ∈ {u | f · u ∈ T});
↔ ∀xT [x ∈ {u | f · u ∈ T}];
↔ ∀xT ({u | f · u ∈ T} · x);
↔ T ∀̇{u | f · u ∈ T};
↔ T [∀uT (f · u)]

Hence

¬T (∀̇f) ∨ ∀xT (f · x) ⇒ T [¬T (∀̇f)] ∨ T [∀xT (f · x)]
⇒ T [¬T (∀̇f) ∨ ∀xT (f · x)]
⇒ T [T (∀̇f) → ∀xT (f · x)]

Similarly, using

¬∀xT (f · x) ↔ T [¬∀xT (f · x)]

we obtain T [∀xT (f · x) → T ∀̇f ].

4.1. Final remarks

Definition 9.

Pa :⇔ Ta ∨ T ¬̇a

Pa formally represents the predicate “a is a proposition”.
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Proposition 11 (NFI). The collection of all propositions is a proper subset of
the universe:

∃y(y = {x |Px}) ∧ {x |Px} ⊂ V

Moreover P has the following closure properties:

P ([x ∈ y]) ∧ P [Tx];
Pa ∧ (Ta→ Pb) → P (a→̇b);

Pa ∧ Pb → P (a∧̇b) ∧ P (a∨̇b);
Pa → T [Pa];

P (∀̇f).

The first claim is a consequence of proposition 10. As to the remaining prop-
erties, apply proposition 9.

A few closure conditions of the previous proposition are reminiscent of
corresponding axioms in PT and AT; but we stress that the axiom T [¬Px] of
AT is refuted in the present context, while the (analogue of the) last statement
is clearly unsound, provably in AT and PT. Note also that P (∀̇f) implies
∀xP (f · x), i.e. every set defines a propositional function.

We conclude by representing Russell’s contradiction within the theory of
propositions and truth that we have sofar developed in NFI.

Definition 10.

τ(f) := [P (∀̇f)]

By definition of the map A 7→ [A], pairing, and proposition 11, we obtain:

Lemma 13. NFI proves :

P (τ(f)) ∧ T (τ(f));
τ(f) = τ(g) → f = g

So the operation τ is a well-defined injective map from sets into truths (and
propositions).

Proposition 12. NFI proves:

¬∃d∀x(x ∈ d↔ (∃f ⊆ P )(x /∈ f ∧ x = τ(f))

To sum up: we have considered three formal systems for dealing with Russell’s
contradiction in Appendix B of [21]. In all systems the Russellian argument
can be naturally formalized, but it is essentially sterilized either by denying the
existence of a suitable propositional function or a set. The first two systems are
provably non-extensional and predicatively inclined; no analogue of the power
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set is apparently definable, while the collections of truths and propositions do
not define completed totalities.

In the third system we do have the set of all propositions and truths and
extensionality is basic. The contradiction is then avoided by the mechanism
of stratification and in accordance with an impredicative type theoretic per-
spective.
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